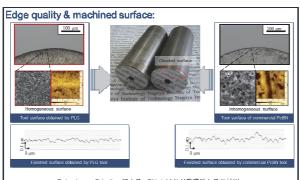
切削工具表面の摩擦・摩耗制御

糸魚川文広 (機能工学専攻)

研究概要

工具など高負荷摺動面に微細形状や表面テク スチャーを付与し摩擦・摩耗を低減する技術を 開発しています。同時に要求微細形状、微細構 造を有する表面を短パルスレーザーを用いて効 率良く創製する加工技術を開発しています。ま た、摺動負荷や摺動形態に合わせ最適潤滑を選 定できるよう、潤滑摺動面の摩擦応答のシステ ム (構造、運転条件) 依存性の定量化を研究し ています。

背景・従来技術


摺動面の摩擦・摩耗は表面の形状や性状によ り大きく変化します。例えば硬質コーティング は表面だけの耐摩耗を制御する技術です。近年、 微細加工技術の発展により表面にさらなる機能 を付与する試みがなされています。

特徴

摺動は方向性があります。したがって、表面 に形状分布・機能分布を持たせることで摩擦低 このような機 減や潤滑性向上が期待できます。このような機 能性表面を自在に設計できるようにする一般化 された原理の導出と、併せてこれを短パルスレー ザー等を用いた微細加工により実現させる技術 を研究開発しています。

実用化イメージ

市販工具への簡単な追加工により工具摩擦・ 摩耗・損傷を低減します。低出力の短パルスレー ザーと簡単なステージの組合せで工具研磨装置 を構成すれば、再研を外注することなく生産現 場で行えます。

Pulse Laser Grinding による cBN 工具の対先成形とその効果

企業等への提案

研究者からのメッセージ

摩擦・摩耗・潤滑特性への影響因子は多岐にわたります。これらを詳細に調べ影響因子を同定し 特性を改善する手法を研究しています。実製品で生じる摩擦・摩耗現象の解明と特性改善に力を発揮 できると考えています。

文献・特許

- Hiroki Kiyota, Fumihiro Itoigawa, Shota Endo and Takashi Nakamura, IJAT, Vol. 7, No.3(2013) pp.
- Daisuke Suzuki, Fumihiro Itoigawa, Keiichi Kawata and Takashi Nakamura, IJAT, Vol. 7, No.3(2013) pp. 337-344
- ・清田大樹、糸魚川文広、中村隆:トライボロジー会議 2013 春予稿集, C31

利用可能な設備・装置

- 各種摩擦・摩耗試験機
- · 微細放電加工機
- 短パルスレーザー加工機
- ・応力(ひずみ)可視化装置

共同研究を希望するテーマ

- ・潤滑面の設計に関する研究全般
- ・摺動面の可視化, In-situ 観察 ・切削工具の摩擦・損傷に関する研究全般
- ・レーザー微細加工